A Wiki about biochemical individuality


See Also


Official Symbol: UCP2 and Name: uncoupling protein 2 (mitochondrial, proton carrier) Gene type: protein coding Gene name: UCP2 Gene description: uncoupling protein 2 (mitochondrial, proton carrier)

Organism: Homo sapiens Gene aliases: UCPH; SLC25A8

Chromosome: 11; Location: 11q13


Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs separate oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane. They also reduce the mitochondrial membrane potential in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed in many tissues, with the greatest expression in skeletal muscle. It is thought to play a role in nonshivering thermogenesis, obesity and diabetes. Chromosomal order is 5'-UCP3-UCP2-3'.



The emerging functions of UCP2 in health, disease, and therapeutics

Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):1-38. Mattiasson G, Sullivan PG.

  • The uncoupling proteins (UCPs) are attracting an increased interest as potential therapeutic targets in a number of important diseases. UCP2 is expressed in several tissues, but its physiological functions as well as potential therapeutic applications are still unclear. Unlike UCP1, UCP2 does not seem to be important to thermogenesis or weight control, but appears to have an important role in the regulation of production of reactive oxygen species, inhibition of inflammation, and inhibition of cell death. These are central features in, for example, neurodegenerative and cardiovascular disease, and experimental evidence suggests that an increased expression and activity of UCP2 in models of these diseases has a beneficial effect on disease progression, implicating a potential therapeutic role for UCP2. UCP2 has an important role in the pathogenesis of type 2 diabetes by inhibiting insulin secretion in islet beta cells. At the same time, type 2 diabetes is associated with increased risk of cardiovascular disease and atherosclerosis where an increased expression of UCP2 appears to be beneficial. This illustrates that therapeutic applications involving UCP2 likely will have to regulate expression and activity in a tissue-specific manner.